Dynamical generation of a nontrivial index on the fuzzy 2-sphere

前田 敏治（佐賀大学大学院工学系研究科/KEK）

1 動機と背景

IIB 行列模型は弦理論の非摂動的定式化として提唱された [1]。これは、タイプ IIB 超弦理論のシルト作用を行列正則化したものである。また、これは 10 次元の Super Yang-Mills 理論をゼロ体積極限をとって得られるものである。この場合において時空は行列の固有値分布として表現されると考えられ、また物質的自由度も行列に含まれているということが分かった。その他、定式化として多くの証拠があげられたが、まだいくつかの興味深い課題がある。

- 時空と物質が行列の中にどのように埋め込まれているのかを明らかにしたい。例えば、メトリックやトポロジーがどのように表現されるのかをみたい。そのためには、曲があった空間上で行列模型を考えそのダイナミクスを調べる必要がある。
- 行列模型において 4 次元カイラルフェルミオンを実現させたい。そのためには 10 次元の IIB 行列模型において、余剰次元（6 次元）部分にインデックスを持たせなければならない。

これらは、現象論的に面白い模型をつくるという意味だけでなく、超弦理論が目指す時空と物質を統一的に理解するための手がかりになるという意味においても興味深い課題である。

弦理論において NS-NSB 背景場の下で非可換時空が現れるという事実があり、弦理論において時空の非可換性は重要な役割をしていると思われている。そして近年、行列模型を用いた非可換空間の解析も行われようになり、特にコンパクトで曲がった非可換空間である 2 次元ファジィ球面の研究が盛んに行われている。2 次元ファジィ球面は SU(2) の表現 L_i を導入し、座標として非可換パラメータ α を用いて \(x_i = \alpha L_i \) とすることで表すことができる。そのファジィ球面は Yang-Mills 項に Chern-Simons 項を加えた行列模型の古典解として実現することも知られている。また、有限自由度系の行列模型や非可換幾何の枠組みでいかにインデックスを実現させるかという研究も行われ、文献 [2] では格子ゲージ理論で開発した Ginsparg-Wilson(GW) 関係式を行列模型に応用、行列模型におけるインデックスを提案している。そして文献 [3] では、行列模型において非自明なインデックスを持つ配位のとして Hooft-Polyakov (TP) モノポールの配位について調べられ、トポロジカルチャージの値が 1 になることをみている。

2 講演内容

これらの発展を踏まえ、我々は Yang-Mills-Chern-Simons 行列模型で、ファジィ球面上の U(2) ゲージ理論より TP モノポール配位の方がより安定であることを示すことで、インデックスのダイナミカルな生成のメカニズムを提案した [4]。
このモデルでは、ファジー球面上の $U(2)$ ゲージ理論は行内でサイズが同じ2つの重なったファジー球面に相当する。また、TP モノポール配置は2つのファジー球面上にゲージ場 $a_i = 1 \otimes \frac{1}{2} (r_i)$ はパウリ列挙を置いたが、これまでは SU(2) の代数を満たすので既約分解することができ、それは行のサイズの差が2である2つのファジー球面を考えることもできる。具体的には、より一般的な配位として、行のサイズの差が2m(m整数)である2つのファジー球面を考え、文献[3]で定義されたトポロジカルチャージと簡単な代数の計算から、その配位のトポロジカルチャージが m になることを示した。そして、その行のサイズの差が2mの2つのファジー球面の自由エネルギーを調べることで、$m = 0$ の2つの重なったファジー球面は不安定で、$m = 1$ の TP モノポール配置に崩壊し、さらに $m = 2, m = 3, \ldots$ と行のサイズの差が大きくなるほどより安定で、最終的に1枚のファジー球面まで崩壊することをみた。また、背景場の方法で1ループまで有効作用を求め量子補正まで含めて考察した結果、この特徴は古典レベルで決まっていることも分かった。

さらに我々は、ゼロモード方向に沿って1ループ有効作用を計算し崩壊モードを調べることで、重なった2つのファジー球面は TP モノポール配位の方向に崩壊することを示した。また、その方向に対して、2つのファジー球面は行のサイズ N を大きいときはより不安定化し、行列のサイズ N を大きくしていくと metastable になり、N 無限大的極限では古典作用のほうが効いてきて、TP モノポールの方向へ崩壊するといった特徴を持つことを示した。同様に、TP モノポール配位からの崩壊モードを調べると、古典的レベルでゼロモード方向に対して平坦であった。しかし、上で述べたように、TP モノポール配位は古典レベルでさらに安定なモノポール配位へ崩壊するので、何か別の方向に崩壊していると考えられ、古典レベルで metastable になっていると思われる。

3 今後の課題と展望

今回は $m = 0$ の重なった2つのファジー球面 ($U(2)$ ゲージ理論) の崩壊する方向を調べた結果、TP モノポール配位 ($m = 1$) の方向に不安定化することが分かったが、次に TP モノポール配位 ($m = 1$) から $m = 2$ の配位、$m = 2$ の配位から $m = 3$ の配位への崩壊モードを調べ、どの方向に最も不安定化するのかをみる必要がある。また、トポロジカルチャージが任意の m のゲージ場の具体的な配位をもつさまざまなも面白い課題である。そして、この結果のため最も簡単な2次元のファジー球面を考えたが、実際に我々の住む4次元で、カイラルフェルミオンを実現させるためには、次元を拡張し高次元の非可換多様体上でトポロジカルに非自明な配位を調べ、そのダイナミクスをみる必要がある。その他、今後は模型が10次元のIIB 行列模型とどのよろいに関係しているかをみることも重要である。

参考文献