実践報告

関数的な見方を養う第1学年算数科学習指導の考察
－「わくわく問題」と「問い返し発問」の活用を通して－

立石 耕一*

Consideration of the First Grade Arithmetic Family Educational Guidance
with which the Function-like Point of View is Fed:
Through the Utilization of a Problem and "Asking" a "Question Excitedly"

Koichi TATEISHI*

【要約】
本稿の目的は，第1学年の「数量関係」の領域で，身近な事象や式から変化する2つの数に着目し，
見つけた規則を表現させる授業のあり方を明らかにすることである。検証授業の結果，考えの根拠を明
らかにし，既習事項との関連を明らかにする第1学年の児童の姿を見いだすことができた。

【キーワード】
関数の考え，わくわく問題，問い返し発問

I 主題設定の理由
平成20年度改訂の学習指導要領では，低学年から「数量関係」の領域が設けられた。この理由を小
学校学習指導要領解説算数編では，(以下，指導要領解説と言う)「言葉，数，式，図，表，グラフな
どを用いた思考力・判断力・表現力等を重視するため，低学年から『数量関係』の領域を設け，各学
年において充実を図っている。」とある。この領域の主な内容は，「関数の考え」，「式の表現と読み」，
「資料の整理と読み」である。「関数の考え」は，「数や図形について取り扱う際に，それらの変
化や対応の規則性に着目し問題を解決していく考え方」である。言い換えれば，関数の考えは，問題
を効率的に解決したり，未知の数を予想したりすることができ，数学を創造的に，発展的に教えてい
く際に，大変重要な考え方である。このことをうけ，低学年においても，式や数を整理し，規則性
を見せつけ，表現するという関数的な見方を養う指導を取り入れていくべきであると考える。
一方で，児童の発達段階を考えると，初めから，身近な事象や式から変化する2つの数を出す
ことは難しい。また，規則性を見付けてうまく表現できないことが予想される。
そこで実際の指導では，その素地として，規則性を見付け，発見した喜びを味わわせるとともに，
その規則性を表現し合う経験を児童にさせたい。このように，2つの数に着目し，見つけた規則性
を表現させる方法を探ることが，本研究の目的である。

II 研究の目標
第1学年の「数量関係」の領域で，身近な事象や式から変化する2つの数に着目し，見つけた規
則を表現させる授業のあり方を明らかにする。

*佐賀大学教育学部附属小学校
Ⅲ 研究の仮説
規則性に着目する必要感のある問題（「わけわからず」）と、面を設定し、効果性を認め、示す表現する活動（「前向きの回」）を行なうと、関数の考えの素地を育て、成功に気づくことができる児童が育つであろう。

Ⅳ 研究の内容と方法

1 研究の内容
(1) 「わけわからず」と「前向きの回」に関する理論研究
(2) 仮説検証のための授業実践（第1学年）及びその分析と考察
(3) 目標に対する児童の変容の調査と考察

2 研究の方法
(1) 算数学習指導に関する各種文献・実践発表の資料を収集・分析する。
(2) 仮説について検証するための授業実践を行い、児童の変容を基に研究仮説の有効性を検証する。
(3) ア・イでの研究の成果と今後の課題を明らかにする。

Ⅴ 研究の実際

1 研究仮説の具体化
指導要領解説に、第1学年の「数値関係」の目標を以下のように示している。

具体的物を用いた活動を通じて、数がその関係を数、式、図などに表したり読み取ったりすることができるようになる。

第1学年において、「具体的物を用いた活動を通じて」授業を展開することは、1年生という発達の段階からみると、大切なものである。つまり、具体的物を用いた算数的活動から数がその関係を数、式、図などに表したり読み取ったりすることができる授業を展開する必要がある。表1の1年生の問題解決学習の流れの例において①自力解決では、具体的物（りんごを数える）や半具体的物（ブロック、図）、抽象化されたもの（数字、式）で解決を図る。その後、②練り合いで、それぞれの考え方をださせ、③練り合いで練習の観点などを基に、まとめていく授業を多く実践してきた。しかし、これまでの授業を振り返ってみると、児童は、答えをだす思考を止め、計算が正しくできることを「数がわかる」と思ってい るところがあった。また、練り合いで、わかって いる児童の発表会になってしまっていた。

そこで、自分の考えを半具体的物や図で表すことや一つの考えで満足せず、多様な考え方をだす習慣を身につけられるように問題提示と練り合いで展開を工夫していこう。
2 仮説の詳細

（1）「わくわく問題」とは

表2 「わくわく問題」の内容

<table>
<thead>
<tr>
<th>①意欲をひき出す問題</th>
</tr>
</thead>
<tbody>
<tr>
<td>②多様な見方や考え方ができる問題</td>
</tr>
<tr>
<td>③系統性や発展性がある問題</td>
</tr>
</tbody>
</table>

問題が提示されたときに、ただ問題が解けなければ、答えが出せればいいという児童の様子が見受けられる。しかし、問題が提示されただけで、答えが出せただけでは解答の本当の楽しさや喜びを感じることができたとは言えない。児童が解答の本当の楽しさや喜びを感じるためには、問題に向き合い、自分の考えを持ち、自分の考えと違う多様な考えに触れ、そして、よりよい考えにいきつづく途中で「なるほど」や「そうだと思った」のような気持ちをもつことで感じることができると考える。

1年生の児童が集中できる時間は長くない。15〜20分ぐらいではないだろうか。そこで、児童が「わくわく」感を持ち続け、考えることができる問題を提示する必要がある。したがって、「わくわく問題」は、児童が「わくわく」感を持って、「やってみたい（表2①）という意欲を引き出し、そして多様な見方や考え方ができる問題（表2②）でなければならないと考える。さらに、学年が進むにつれて積み重ねることができる系統性や発展性がある問題（表2③）が求められる。

（2）「問い返し発問」とは

「問い返し発問」は、子どものつぶやき、発言、動作、書いたものなどの様々な表現に対して、その意味や根拠、よさを問う発問である。また、応用として、それらの子どもの表現に対して、反論をしたり、別の案を出したりして、子どもの思考を揺さぶり、新たな思考を引き出すために行われる発問である。「基幹学力をはぐくむ『言語力』の授業」著：盛山隆雄氏のこの「問い返し発問」（表3）を活用すれば、児童たちが話す内容が、「事実」「解釈」「理由」「方法」など、多様なものになるようにすることができると考える。しかし、「問い返し発問」を行えば、児童の多様な見方や考え方に引き出せるわけではない。そこには、児童の興味・関心を引き問題を提示する必要がある。つまり、「わくわく問題」が「問い返し発問」を生み出し、「問い返し発問」から次の「わくわく問題」をつくり出す。共になくてはならない関係にある。
表3 「問い返し発問」の分類

<table>
<thead>
<tr>
<th>项目</th>
<th>事例</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 児童の表現の意味を問う。</td>
<td>「12+4ってどういうことかな？」</td>
</tr>
<tr>
<td>② 児童の表現の根拠を問う。</td>
<td>「○○さんは、どうしてこうしたと思う？」</td>
</tr>
<tr>
<td>- 友だちの反応に対して</td>
<td>「なぜ、ひき算になったのかね？」</td>
</tr>
<tr>
<td>- 算数の内容に対して</td>
<td>「○○さんのこの式のよいところは何ですか？」</td>
</tr>
<tr>
<td>③ 児童の表現のよさを問う。</td>
<td>「どこが違うのかね？」</td>
</tr>
<tr>
<td>④ 児童の表現の正誤を問う。</td>
<td>「どこが違うのかね？」</td>
</tr>
<tr>
<td>⑤ 児童の表現の別の提案をする。</td>
<td>「4+12でも合っているのかね？」</td>
</tr>
</tbody>
</table>

3 仮説を取り入れる前の授業の分析

(1) 単元構成について

単元名：「のりはいくつ ちかいはいくつ」（第1学年3組 35名 平成24年7月3日実施）

本 時 全11時間の7時30分

本時の目標 きまりを見つけて、答えが9以下になるひき算を考えることができる。 (考)

指導の概要

まず、答えが3になるひき算を考えるだけたくさん考えさせる。はじめは、自由に（ぱらぱら
に）答えが3になるひき算と考えていただくが、少し向い、10、9、8、…と大きな数から順番にひ
く考え方を気づかせて使うように指導していいく。のりが1、2、…9になる式を考えることを通
して、式についてのきまりや順序よく並んだ式からきまりを見つけたりすることをねらう。
そして、練習して通して、「たし算の逆のひき算」「前の数か後ろの数を順に変えること」「ひき算
のきまり（大きい数→小さい数）」などという観点を基に、10以下の数同士のひき算の立式と計算
を正確にすることができる児童の姿を目指していく。

(2) 問題提示

表4 問題提示段階での児童の様相（T：教師 C：複数児童）

<table>
<thead>
<tr>
<th>児童の活動と教師の働きかけ（一部省略）</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ 本時の問題を知る。</td>
</tr>
<tr>
<td>「□ー□＝□ 1から10までの数を使って、答えが□になるひき算を考えましょう。」</td>
</tr>
<tr>
<td>T：今までは、前後の数がわかったが、答えの数を考えていましたが、今日は、答えの数だけがわからない前に数や後ろの数を考えていきましょう。</td>
</tr>
<tr>
<td>C：難しそう。</td>
</tr>
<tr>
<td>T：（答えの数の方を指して）ここに入る数はどんな数ですか。</td>
</tr>
<tr>
<td>C：1、2、3、4、5、6、7、8、9、10</td>
</tr>
<tr>
<td>T：（1〜10のカードを提示）</td>
</tr>
<tr>
<td>C：10はおもしろい。 T：どういうことかな。</td>
</tr>
<tr>
<td>C：だって、答えが10になるのは、11－1とかだから。</td>
</tr>
</tbody>
</table>
| C：11は、1～10までじゃない。
| T：そうだね。答えが10になる問題はないね。
| （その後、答えが9で3になる場合を、ブロックや式を使って全員で確認する。） |
| T：今日のめあては、「1から見て答えが□になるひき算の式を考えよう。」です。 |

□ー□＝□という条件不足による問題提示により、児童の興味関心をひくことができそうだっ
たが、最初から、3つとも空欄にしたために、難しいと感じた児童が多かった。また、問題では、
立式を求めているが、めあてではきまりを求めていて、2つの問題が混在する状況になっていた。
(2) 自力解決の状況

表5から、8名の児童が立式できていないところがある。自力解決の時間が足りないということももあるが、さびを見つけないために遅いと考えられる。また、4名の児童が、全ての式を見て、気付きを挙げることができていない。○と△を合わせて、12名の児童が練習合いで、自分の意見を持って臨むことができていない。

表5 自力解決の状況

| 番号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| 解決状況 | △ |

○…全て立式し、気付きを書く。 ○…全て立式する。 △…立式できていないところがある。

(3) 練習合い

表6 練習合い①段階での児童の様相（T：教師 C：複数児童）

<table>
<thead>
<tr>
<th>児童の活動と教師の働きかけ（一部省略）</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ 解決方法についての話し合い①（答えが3になる式をだし合う場面）</td>
</tr>
</tbody>
</table>
| T：後の数を順に並べて考えます。
C：なるほど。
T：（空欄部分を指して）ということは、まだ式があるのか。
C：ある。
T：〇〇さんは、後の数を順に並べて考えていましたね。ということは、（一番上の式を指して）この上の式は何になるのか。
（その後、空欄部分を後ろの数を順に提示していき、答えが3になる式を全部した。） |

話し合い①では、前の数を並べている児童が多かったために、「なるほど」という児童が多かった。そのため、発言をひきだしてにくい雰囲気になってしまった。また、児童が発表したことの補足説明を教師がしていたために、児童の発言が少なくなかった。

表7 練習合い②段階での児童の様相（T：教師 C：複数児童）

<table>
<thead>
<tr>
<th>児童の活動と教師の働きかけ（一部省略）</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ 解決方法についての話し合い②（答えが1、2、4、8になる式をだし合う場面）</td>
</tr>
</tbody>
</table>
| ① 答えが1、2、4、8になる式をだしおう。
- 二人でタイムで、お互いの式をだしおう。
- みんなでタイムで、みんなの式をだしおう。
T：答えが1になるひき算の式がわかる人はいますか。
C：2-1=1です。他にいる人。
（その後、リレー形式で、発表者が次の発表者を当てていった。） |
| ② 全部の式を見て、気付いたことをだしおう。
T：全部の式がでまったね。（並べたカード全体を指して）全部の式を見て、気付いたことがありませんか。
C：（式を縦に見ると）後ろの数が順番になっています。
C：なるほど。同じです。
T：（板書をする。）他には。
C：（式全体を見て）階段になっています。
C：同じです。
T：指で示してください。（板書をする。）
C：たし算のときの階段と反対になっています。
T：（板書をする。）式はどうかな。これだけかな。
C：たし算のときと比べて答えで9が1つしかない。

図4 練習合い①
図5 2人でタイム
図6 みんなでタイム
C：(たし算と比べて) 前の数が答えの数になっている。
T：(たし算とひき算を比べて) できる時とできない時で何が違うのか。
C：大きい数から小さい数は加えない。
T：(板書をする、) いつでも使えることは何か。
C：後ろの数を順に並べるとわかる。
C：たし算と対決になっている。
C：(式を横に見ると) 横の後ろの数が同じ。 C：大きい数から小さい数をひく。

話し合い②では、答えが1, 2, 4〜8になる全ての式を扱ったために、全ての式をだすのに、
時間がかかったりすぎたため、きまりを発表し合う時間が足りなくなったり。また、発表した内容に対
して、「なるほど」や「同じ」などを発言させていったが、「なぜ？」や「どんなところが？」と
いう聞き返しをしていなかったために、形式的な発言で終わっていた。

答えが口になる式を全部出すのか、きまりを見つけるのか、全部の式を見てから気付いたこと
をいうのか、という3つの間の関わりをまとめることができなかった。児童の発言でつなぐこ
とができず、教師の思考で授業を進めていた感じになってしまった。

4 仮説を取り入れた授業の実際
(1) 単元構成について

単元名　「うちぬけ！けいさんスナイバー～くりあがりのあるたしざん～」

(第1学年3組 35名 平成24年10月17日実施)

本時 全9時間の7時間目
本時の目標

ばらばらに提示されたカードを並べたり、比較したりすることで、規則性を見つけて、足りない
カードの式を説明することができる。　(数学的な考え方)

指導の概要

指導にあたっては、導入で、「7+3」、「7+4」、「7+5」、「7+6」、「7+7」、「7+8」
「7+9」を順番に提示し、計算の習熟を図るとともに、規則性に目を向けさせる。被加数を「は
じめの数」加数を「たす数」と表することを確認し、それらの言葉を使って規則性を説明させるこ
とで、全体での説明をスムーズにさせる。次に、答えが11になるカード「9+2」、「8+3」、「7
+4」、「6+5」、「5+6」、「4+7」、「3+8」、「2+9」から、「8+3」、「5+6」、「4+
7」の3枚のカードを除いたものと、何も書かれていない3枚のカードを提示し、カード3枚足
りないように知らせ、そのカードを見つけてほしいことを告げる。この時、計算ではなくカード
を並べたり、比較したりすることで、足りないカードを見つけることを確認する。自力解決では、
児童1人1人に「9+2」、「7+4」、「6+5」、「3+8」、「2+9」のカードと何も書かれて
いないカード3枚が入った袋を渡し、自由に並べられるようにする。集団解決では、足りないカ
ードに書かれた式を答えさせ、理由を問うことで、被加数の変化と加数の変化に気付かせたい。

(2) 「わくわく問題」を取り入れた問題提示

表8 問題提示段階での児童の様相（T：教師 C：複数児童）

<table>
<thead>
<tr>
<th>児童の活動と教師の働きかけ（一部省略）</th>
</tr>
</thead>
<tbody>
<tr>
<td>○本時つながる活動</td>
</tr>
<tr>
<td>T：7+4は？</td>
</tr>
<tr>
<td>C：11。</td>
</tr>
<tr>
<td>T：7+5は？</td>
</tr>
<tr>
<td>C：12。</td>
</tr>
<tr>
<td>T：7+6は？</td>
</tr>
<tr>
<td>C：13。</td>
</tr>
</tbody>
</table>
C：やっぱり。次の答えがわかった！
T：どうしてわかったの。
C：答えの数が1つずつ大きくなっている。
T：本当かな。次は7＋7は？
C：14。やっぱりだ。
T：どうして答えの数が1つずつ大きくなっているのかな。
C：たす数が1つずつ大きくなっているから。
○本時の問題との出会い
T：(11と書かれたカードを8枚提示）何の数かな？
C：何だろう。裏に何か書いてあるのかな？
T：めくってみよう。（1枚めくる。）
C：9＋2だ！11は答えだ。
T：他のカードもめくってみよう。あれ！
C：式が書いてない。
T：3枚式が書いていないカードがあるね。今日の問題は、
このなかった3枚のカードをみつけよう。

なくなったカードを見つけるというプライドとカードを並べる操作のある問題を提示し、児童は、興味深そうに見ていた。

(3) 児童の自力解決の状況

表9から、2名の児童が「10＋1」を書いている。これは、並べる活動をせずに、答えが11の式を挙げたと考えられる。しかし、自力解決で全児童が、なくなったカードの式を考えることがでいている。本時のつながる活動と問題提示（くわくわ問題）を通じて、「やってみたい」という気持ちを引き出し、見通しを持っていて、問題解決に向かわせることができている。

表9 児童の自力解決の状況

| 番号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
|------|---|---|---|---|---|---|---|---|---|----|

A：たされる数に着目して解く（図9） B：たす数に着目して解く（図10）
C：たし算の交換法則に着目して解く（図11） △：間の数以外の式を書く

たされる数に着目し、2、3、4、…と順序よく並べることで空欄のたされる数7、6、3を見つけることができている。そこから、たす数は、9、8、7…と1ずつ減っていることから、8、5、4を見つけていている。

図9 自力解決の様子とノート①

図10 自力解決の様子とノート②

たされる数とたす数の交換法則が成り立ち「たし算のきまり」を使って、「8＋3があるなら、はんたいの3＋8あるはずだ！」と考えて、4＋7の反対の7＋4と5＋6の反対の6＋5を見つけている。
図11 自力解決の様子とノート③

(5) 「問い返し発問」を取り入れた練習合い

表10 練習合い段階での児童の様相（T：教師 C：複数児童）

<table>
<thead>
<tr>
<th>児童の活動と教師の働きかけ（一部省略）</th>
</tr>
</thead>
<tbody>
<tr>
<td>○2人でタイム</td>
</tr>
<tr>
<td>隣の席の児童同士で「なくなったカード」と「見つけ方」について伝え合う。並べたカードを見せながら、考えを伝え合う。</td>
</tr>
<tr>
<td>○みんなでタイム</td>
</tr>
<tr>
<td>（代表の児童がカードを並べた後）</td>
</tr>
<tr>
<td>T：この並べ方でわかるみつけ方はなにかかな。</td>
</tr>
<tr>
<td>C：たす数を並べている。 T：たす数がどう変わっているの。</td>
</tr>
<tr>
<td>C：2, 3, 4・・・と小さい順に並べている。 C：1つずつ増えている。</td>
</tr>
<tr>
<td>T：そうだね。たされる数はどう変わっていているの。 C：1つずつ減っている。</td>
</tr>
<tr>
<td>T：そうだね。それでは、この考え方で（根拠）になっていることは何だろう。</td>
</tr>
<tr>
<td>C：並べる。 T：どんな並べ方がかな。 C：1つずつ増やす。</td>
</tr>
<tr>
<td>T：そうだね。1つずつ増やしたり減らしたりすることを、「順序よく」っていうんだよ。</td>
</tr>
<tr>
<td>みんなでいってみましょう。 C：「順序よく並べる！」</td>
</tr>
</tbody>
</table>

このように、低学年の考えの根拠を明らかにする練習合いにおいて、低学年の児童は、まだ、既習事項が少ないので、問い返していく中で、だれの考えをもとに指導者が気付かせていく。

(6) 振り返り

最後に児童たちに学習の振り返りとして、学習感想を書かせた。

図12 児童のノート①

・じゅんばんにならべるとすぐになくなったかずがみつけられることがわかりました。
・きまりをすぐにみつけられました。○○くんや口のまんのかずがえでなくなったかずをみつけるのもおもしろかったです。じゅんばんがやくにたしました。
・たしけんのきまりでうえからじゅんにならべるのがやっかいました。

図13 児童のノート②

図14 本時の学習感想

図15 本時の板書
5 授業を終えて（考察）
今回は、繰り上がりのあるたし算の加数分解と被加数分解の学習を終えた段階で、違う視点から加数と被加数に着目し、繰り上がりのあるたし算の式をみてきたいと考え実践した。多くの児童が、たされる数やたす数に着目して、カードを並べ、とんでいる数同士の間になくなったカードがあるというみつけ方で考えていた。また、交换法則をつかって、「反対の式」を考えている児童もいた。これらの考えが問い返し発問を通して、「みつけ方がわかった。」で終わらず、それぞれの考えの根拠である「順序よく並べる」と「たし算のきまり」という観点を明らかにすることができた。さらに、学習感想からも規則性を見つけるようを感じた児童が増えたと考えられる。

6 検証授業前後での児童の算数に対する意識調査
7月と11月に算数の学習について以下の内容でアンケートをとった。
・算数の学習は、どうですか。理由も書きましょう。

表11 アンケート結果

<table>
<thead>
<tr>
<th></th>
<th>7月</th>
<th>11月</th>
</tr>
</thead>
<tbody>
<tr>
<td>いつもするの</td>
<td>60%</td>
<td>74%</td>
</tr>
<tr>
<td>たのしい</td>
<td>37%</td>
<td>26%</td>
</tr>
<tr>
<td>あまりたのしくない</td>
<td>3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

表11のアンケートの結果、「いつもするの」が7月の6割から7割以上に増えている。理由を見る。「調べる活動」や「二人でタイムやみんなでタイム」で自分の考えをもったり、話し合ったりするのを答えている。今回の実践を通じて、情意面でもよい変容が見られることが分かった。

VI 研究のまとめと今後の課題
1 研究の成果
(1) 問題把握の場で、既習事項と新たな問題をつなぐ活動と「くわくく問題」を提示することで、自力解決の場で規則性を見つけようとした、表現しようという関数的な見方の素地を身につけている児童が増えた。
(2) 児童の見方や考え方を引き出す「問い返し発問」を行うことで、考えの根拠を明らかにし、既習事項との関連を明らかにすることができた。

2 今後の課題
(1) 「数量関係」領域だけではなく、他の領域における問題提示と繰り合いの工夫
(2) 児童同士の考えを交流させ、自発的に評価や修正を図るような「繰り合い」の場の確立

《引用文献》
・盛山　隆雄著　『基幹学力をはぐくむ「言語力」の授業』2011年　明治図書出版株式会社p.38
《参考文献》

・文部科学省 『小学校学習指導要領解説 算数編』 1999年 東洋館出版社
・日本数学教育学会 『算数教育指導用語辞典 第四版』 2010年 教育出版株式会社
・盛山 隆雄著 『言語活動を生かした単元の導入授業』 2011年 東洋館出版社